Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.09.09.22279754

ABSTRACT

ABSTRACT Objectives To quantify contact patterns of UK home delivery drivers and identify protective measures adopted during the pandemic. Methods We conducted a cross-sectional online survey to measure the interactions of 170 UK delivery drivers during a working shift between 7 December 2020 and 31 March 2021. Results Delivery drivers had a mean number of 71.6 (95% Confidence Interval (CI) 61.0 to 84.1) customer contacts per shift and 15.0 (95%CI 11.19 to 19.20) depot contacts per shift. Maintaining physical distancing with customers was more common than at delivery depots. Prolonged contact (more than 5 minutes) with customers was reported by 5.4% of drivers on their last shift. We found 3.0% of drivers had tested positive for SARS-CoV-2 since the start of the pandemic and 16.8% of drivers had self-isolated due to a suspected or confirmed case of COVID-19. Additionally, 5.3% (95%CI 2.3% to 10.2%) of participants reported having worked whilst ill with COVID-19 symptoms, or with a member of their household having a suspected or confirmed case of COVID-19. Conclusion Delivery drivers had a large number of face-to-face customer and depot contacts per shift compared to other working adults during this time. However, transmission risk may be curtailed as contact with customers was of short duration. Most drivers were unable to maintain physical distance with customers and at depots at all times. Usage of protective items such as face masks and hand sanitizer was widespread.


Subject(s)
COVID-19
2.
researchsquare; 2022.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-1140332.v1

ABSTRACT

Background: SARS-CoV-2 is known to transmit in hospital settings, but the contribution of infections acquired in hospitals to the epidemic at a national scale is unknown. Methods: We used comprehensive national English datasets to determine the number of COVID-19 patients with identified hospital-acquired infections (with symptom onset >7 days after admission and before discharge) in acute English hospitals up to August 2020. As patients may leave the hospital prior to detection of infection or have rapid symptom onset, we combined measures of the length of stay and the incubation period distribution to estimate how many hospital-acquired infections may have been missed. We used simulations to estimate the total number (identified and unidentified) of symptomatic hospital-acquired infections, as well as infections due to onward community transmission from missed hospital-acquired infections, to 31 st July 2020. Results: In our dataset of hospitalised COVID-19 patients in acute English hospitals with a recorded symptom onset date (n = 65,028), 7% were classified as hospital-acquired. We estimated that only 30% (range across weeks and 200 simulations: 20-41%) of symptomatic hospital-acquired infections would be identified, with up to 15% (mean, 95% range over 200 simulations: 14.1%-15.8%) of cases currently classified as community-acquired COVID-19 potentially linked to hospital transmission. We estimated that 26,600 (25,900 to 27,700) individuals acquired a symptomatic SARS-CoV-2 infection in an acute Trust in England before 31st July 2020, resulting in 15,900 (15,200-16,400) or 20.1% (19.2%-20.7%) of all identified hospitalised COVID-19 cases. Conclusions: Transmission of SARS-CoV-2 to hospitalised patients likely caused approximately a fifth of identified cases of hospitalised COVID-19 in the “first wave” in England, but less than 1% of all infections in England. Using time to symptom onset from admission for inpatients as a detection method likely misses a substantial proportion (>60%) of hospital-acquired infections.


Subject(s)
COVID-19
3.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.12.30.21268307

ABSTRACT

Throughout the ongoing COVID-19 pandemic, the worldwide transmission and replication of SARS-COV-2, the causative agent of COVID-19 disease, has resulted in the opportunity for multiple mutations to occur that may alter the virus transmission characteristics, the effectiveness of vaccines and the severity of disease upon infection. The Omicron variant (B.1.1.529) was first reported to the WHO by South Africa on 24 November 2021 and was declared a variant of concern by the WHO on 26 November 2021. The variant was first detected in the UK on 27 November 2021 and has since been reported in a number of countries globally where it is frequently associated with rapid increase in cases. Here we present analyses of UK data showing the earliest signatures of the Omicron variant and mathematical modelling that uses the UK data to simulate the potential impact of this variant in the UK. In order to account for the uncertainty in transmission advantage, vaccine escape and severity at the time of writing, we carry out a sensitivity analysis to assess the impact of these variant characteristics on future risk.


Subject(s)
COVID-19
4.
researchsquare; 2021.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-1098214.v1

ABSTRACT

Hospital-based transmission played a dominant role in MERS-CoV and SARS-CoV epidemics but large-scale studies of its role in the SARS-CoV-2 pandemic are lacking. Such transmission risks spreading the virus to the most vulnerable individuals and can have wider-scale impacts through hospital-community interactions. Using data from acute hospitals in England we quantify within-hospital transmission, evaluate likely pathways of spread and factors associated with heightened transmission risk, and explore the wider dynamical consequences. We show that hospital transmission is likely to have been a major contributor to the burden of COVID-19 in England. We estimate that between June 2020 and March 2021 between 95,000 and 167,000 patients acquired SARS-CoV-2 in hospitals with nosocomially-infected patients likely to have been the main sources of transmission to other patients. Increased transmission to patients was associated with hospitals having fewer single rooms and lower heated volume per bed. Moreover, we show that reducing hospital transmission could substantially enhance the efficiency of punctuated lockdown measures in suppressing community transmission. These findings reveal the previously unrecognised scale of hospital transmission, have direct implications for targeting of hospital control measures, and highlight the need to design hospitals better-equipped to limit the transmission of future high consequence pathogens.


Subject(s)
COVID-19 , Cross Infection
5.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.03.31.21251220

ABSTRACT

Universities provide many opportunities for the spread of infectious respiratory illnesses. Students are brought together into close proximity from all across the world and interact with one another in their accommodation, through lectures and small group teaching and in social settings. The COVID-19 global pandemic has highlighted the need for sufficient data to help determine which of these factors are important for infectious disease transmission in universities and hence control university morbidity as well as community spillover. We describe the data from a previously unpublished self-reported university survey of coughs, colds and flu-like symptoms collected in Cambridge, UK, during winter 2007-2008. The online survey collected information on symptoms and socio-demographic, academic and lifestyle factors. There were 1076 responses, 97% from University of Cambridge students (5.7% of the total university student population), 3% from staff and <1% from other participants, reporting onset of symptoms between September 2007 and March 2008. Undergraduates are seen to report symptoms earlier in the term than postgraduates; differences in reported date of symptoms are also seen between subjects and accommodation types, although these descriptive results could be confounded by survey biases. Despite the historic and exploratory nature of the study, this is one of few recent detailed datasets of flu-like infection in a university context and is especially valuable to share now to improve understanding of potential transmission dynamics in universities during the current COVID-19 pandemic.


Subject(s)
COVID-19 , Influenza, Human , Communicable Diseases
6.
ssrn; 2020.
Preprint in English | PREPRINT-SSRN | ID: ppzbmed-10.2139.ssrn.3618215

ABSTRACT

Background: Reports of ethnic inequalities in COVID-19 outcomes are conflicting and the reasons for any differences in outcomes are unclear. We investigated ethnic inequalities in critical care admission patterns, the need for invasive mechanical ventilation (IMV), and in-hospital mortality, among hospitalised patients with COVID-19. Methods: We undertook a prospective cohort study in which dedicated research staff recruited hospitalised patients with suspected/confirmed COVID-19 from 260 hospitals across England, Scotland and Wales, collecting data directly and from records between 6th February and 8th May 2020 with follow-up until 22nd May 2020. Analysis used hierarchical regression models accounting for confounding, competing risks, and clustering of patients in hospitals. Potential mediators for death were explored with a three-way decomposition mediation analysis. Findings: Of 34,986 patients enrolled, 30,693 (88%) had ethnicity recorded: South Asian (1,388, 5%), East Asian (266, 1%), Black (1,094, 4%), Other Ethnic Minority (2,398, 8%) (collectively Ethnic Minorities), and White groups (25,547, 83%). Ethnic Minorities were younger and more likely to have diabetes (type 1/type 2) but had fewer other comorbidities such as chronic heart disease or dementia than the White group. No difference was seen between ethnic groups in the time from symptom onset to hospital admission, nor in illness severity at admission. Critical care admission was more common in South Asian (odds ratio 1.28, 95% confidence interval 1.09 to 1.52), Black (1.36, 1.14 to 1.62), and Other Ethnic Minority (1.29, 1.13 to 1.47) groups compared to the White group, after adjusting for age, sex and location. This was broadly unchanged after adjustment for deprivation and comorbidities. Patterns were similar for IMV. Higher adjusted mortality was seen in the South Asian (hazard ratio 1.19, 1.05 to 1.36), but not East Asian (1.00, 0.74 to 1.35), Black (1.05, 0.91 to 1.26) or Other Ethnic Minority (0.99, 0.89 to 1.10) groups, compared to the White group. 18% (95% CI, 9% to 56%) of the excess mortality in South Asians was mediated by pre-existing diabetes. Interpretation: Ethnic Minorities in hospital with COVID-19 were more likely to be admitted to critical care and receive IMV than Whites, despite similar disease severity on admission, similar duration of symptoms, and being younger with fewer comorbidities. South Asians are at greater risk of dying, due at least in part to a higher prevalence of pre-existing diabetes. Trial Registration: The study was registered at https://www.isrctn.com/ISRCTN66726260. Funding Statement: This work is supported by grants from: the National Institute for Health Research [award CO-CIN-01], the Medical Research Council [grant MC_PC_19059] and by the National Institute for Health Research Health Protection Research Unit (NIHR HPRU) in Emerging and Zoonotic Infections at University of Liverpool in partnership with Public Health England (PHE), in collaboration with Liverpool School of Tropical Medicine and the University of Oxford [NIHR award 200907], Wellcome Trust and Department for International Development [215091/Z/18/Z], and the Bill and Melinda Gates Foundation [OPP1209135], and Liverpool Experimental Cancer Medicine Centre for providing infrastructure support for this research (Grant Reference: C18616/A25153). JSN-V-T is seconded to the Department of Health and Social Care, England (DHSC).Declaration of Interests: All authors have completed the ICMJE uniform disclosure form at www.icmje.org/coi_disclosure.pdf and declare: AB Docherty reports grants from Department of Health and Social Care, during the conduct of the study; grants from Wellcome Trust, outside the submitted work; CA Green reports grants from DHSC National Institute of Health Research UK, during the conduct of the study; PW Horby reports grants from Wellcome Trust / Department for International Development / Bill and Melinda Gates Foundation, grants from NIHR , during the conduct of the study; JS Nguyen-Van-Tam reports grants from Department of Health and Social Care, England, during the conduct of the study; and is seconded to the Department of Health and Social Care, England (DHSC); PJM Openshaw reports personal fees from consultancies and from European Respiratory Society; grants from MRC, MRC Global Challenge Research Fund, EU, NIHR Biomedical Research Centre, MRC/GSK, Wellcome Trust, NIHR (HPRU in Respiratory Infection), and NIHR Senior Investigator outside the submitted work. His role as President of the British Society for Immunology was unpaid but travel and accommodation at some meetings was provided by the Society. JK Baillie reports grants from Medical Research Council UK; MG Semple reports grants from DHSC National Institute of Health Research UK, grants from Medical Research Council UK, grants from Health Protection Research Unit in Emerging & Zoonotic Infections, University of Liverpool, during the conduct of the study; other from Integrum Scientific LLC, Greensboro, NC, USA, outside the submitted work. EM Harrison, H Ardwick, J Dunning, R Pius, L Norman, KA Holden, JM Read, G Carson, L Merson, J Lee, D Plotkin, L Sigfrid, S Halpin, C Jackson, and C Gamble, all declare: no support from any organisation for the submitted work; no financial relationships with any organisations that might have an interest in the submitted work in the previous three years; and no other relationships or activities that could appear to have influenced the submitted work.Ethics Approval Statement: Ethical approval was given by the South Central – Oxford C Research Ethics Committee in England (Ref: 13/SC/0149), and by the Scotland A Research Ethics Committee (Ref: 20/SS/0028).


Subject(s)
Dementia , COVID-19 , Pyruvate Carboxylase Deficiency Disease , Heart Diseases , Hemoglobin SC Disease
SELECTION OF CITATIONS
SEARCH DETAIL